728x90
반응형
sklearn.linear_model.LogisticRegression — scikit-learn 1.0.1 documentation
sklearn.linear_model.LogisticRegression
Examples using sklearn.linear_model.LogisticRegression: Release Highlights for scikit-learn 1.0 Release Highlights for scikit-learn 1.0, Release Highlights for scikit-learn 0.23 Release Highlights ...
scikit-learn.org
Training the Logistic Regression model on the Training set
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state=0)//인스턴스생성
classifier.fit(X_trains, y_tains)//훈련시키는 작업
Predicting a new result
//한 고객의 결과를 내는 것
predict method 사용
classifier.predict(sc.transform([[30,87000]]))//2차원배열에서 30살의 87000달러를 받는 사람의 구매여부가 궁금
result : [0]
Predicting the Test set results[템플릿]
y_pred= classifier.predict(X_test)
print(np.concatenate((y_prep.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1))
왼쪽 열은 테스트세트에서 얻은 결과 오른쪽 열은 실제 얻은 결과
[0.0]
[0,1]
...
(*0은 No, 1은 Yes)
Making the Confusion Matrix
sklearn.metrics.confusion_matrix — scikit-learn 1.0.1 documentation

sklearn.metrics.accuracy_score — scikit-learn 1.0.1 documentation

from sklearn.matrics import confusion_matrix, accuracy_score
cm = confusion_matrix(y_test, y_pred)
print(cm)
accuracy_score(y_test, y_pred)
728x90
'Machine Learning' 카테고리의 다른 글
SVM Support Vector Machine (0) | 2021.11.25 |
---|---|
Training the K-NN model by Python (0) | 2021.11.23 |
[Hands-On]데이터 전처리 템플릿 (0) | 2021.11.17 |
[머신러닝][사이킷런]k-최근접 알고리즘 KNeighborsClassifier (0) | 2021.02.12 |